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ABSTRACT
Controlling the differential expression of many thousands
different genes at any given time is a fundamental task of
metazoan organisms and this complex orchestration is con-
trolled by the so-called regulatory genome encoding complex
regulatory networks. Cis-Regulatory Modules (CRMs) are
fundamental units of such networks. Intuitively CRMs are
small stretches of DNA where several Transcription Factors
bind so to perform in a cooperative manner a specific reg-
ulation task for nearby genes. The in silico prediction of
CRMs is still an open problem, notwithstanding continuous
progress and activity in the last two decades. In this paper
we describe a new efficient combinatorial approach to the
problem of detecting CRMs in promoter sequences, given in
input a database of Transcription Factor Binding Sites en-
coded as Position Weight Matrices. Testing with benchmark
data from TRANSFAC we attain significant better average
performance against nine state-of-the-art competing meth-
ods over 12 data sets, even at high level of “noise” in the
data sets.

Keywords
Cis-Regulatory Module prediction, evaluation benchmark,
combinatorial algorithm.

1. INTRODUCTION
Transcription Factors (TF ) are proteins that bind to short
specific stretches of DNA (called TFBS - Transcription Fac-
tor Binding Sites) in the proximity of genes and participate

in regulating the expression of those genes [4]. The “lan-
guage” of gene regulation is a complex one since a single
TF regulates multiple genes, and a gene is usually regulated
over time by a cohort of cooperating TFs. This complex
network of interactions is still far from being completely un-
covered and understood even for well studied model species.
Groups of TFs that concur in regulating the expression of
groups of genes form functional elements of such complex
network, and, also, are likely to have TFSB in the proxim-
ity of the regulated genes. This phenomenon of clustering
of TFBS is used by exploratory “in silico” tools in order to
predict the location and composition of Cis-Regulatory Mod-
ules (CRMs). A CRM is a stretch of DNA, usually of length
ranging from a few tens to a hundred base pairs (bp), where
a number of cooperating TFs can bind and regulate the ex-
pression of nearby genes [5]. A gene is usually associated to
several CRMs [5].

TFBSs are often described by means of Position Weight
Matrices (PWMs) (see Section 2 for a quick recap). Sev-
eral hundreds of validated PWMs for identifying TFBS are
available in databases such as TRANSFAC [32] and JAS-
PAR [21]. Observe that, although these PWM have been
subject to validation in some form, the highly degenerate
nature of the TFBS implies that, when scanning sequences
for PWM mathches, false positive non-functional matches
are quite likely. Thus additional information and criteria
are needed to filter them out.

Due to the importance of elucidating regulatory networks
over the last two decades more than a hundred methods have
been proposed for the prediction of single functional TFBS
[18, 23, 9, 33], while several dozens for predicting functional
CRMs [29]. However, Wasserman and Sandelin [31] observe
that a great majority of computationally predicted TFBS
arise from pure chance and are non-functional. One line of
attack to overcome this difficulty is to use “unreliable” iden-
tification of single TFBS in order to detect, more robustly,
putative CRMs, which in turn can increase the chance that



the constituent TFBS are indeed functional. A second line
of attack (often used in conjunction with the first one) is to
carefully select the sequences to be searched so that these
are more likely to contain similar functional CRMs.

A survey of van Loo and Marynen [29] classifies the CRM
prediction tools into three large families depending on the
data set fed to the searching procedure.

CRM scanners. These methods scan a set of sequences (or a
whole genome) trying to find CRMs based on a strict prede-
fined model (i.e. matching a specified set of TFBSs defined
by PWMs given as part of the input). They make use of
libraries of known motifs and associated PWMs and of the
propensity of TFBSs to clustering into CRMs.

CRM builders. These methods look for similar CRMs (with-
out a pre-specified pattern) in a set of co-regulated or co-
expressed genes. The matching PWMs can be derived from
a library or can be generated internally by the tool, based
on statistical over-representation of some sub-strings. The
identified CRMs can be found in the regulatory regions of
some or all of the given co-regulated genes.

CRM genome screeners. These methods do not make any
assumption about the specific set of TFs working together,
nor on the over-representation of some CRM over any other
in the input sequence. They are the most general tools and
are usually applied to analyze long sequences (even whole
genomes) searching for clusters of TFBS, without predefined
models.

Progress in the in-silico CRM prediction is hampered by lack
of a common benchmark inclusive of test data and perfor-
mance measures. To date the most comprehensive attempt
in this direction for the case of single motif detection is due
to Tompa and co-authors [27], while for the case of compos-
ite motifs (which are an abstraction of CRMs), Klepper et
al. [14] propose the first benchmarking framework. In [14]
test data extracted from TRANSFAC (and TRANSCompel
[16]) are provided which are mostly from mouse, rat and
homo sapiens. The test sets are made of sequence sets to
be scanned and sets of PWMs for the TFBSs to be sought.
Such lists of PWM also include, as “noise”, a number of “de-
coy” matrices.

A thorough discussion of issues relative to benchmarking for
TFBS and CRM finding tools, including alternative data
sets and alternative approaches can be found in [15].

In this paper we present Composite Motif Finder (CMF )
a new tool for cis-regulatory modules finding that adopts a
two stage approach: first looks for candidate single TFBSs in
the given sequences, and then use them to form modules by
using mainly combinatoric (rather than statistic) arguments.
CMF borrow some ideas from a previous tool we developed
for a slightly different, but related problem [6]. Using the
data set and the published data in [14, 22] we can readily
compare CMF’s performance against eight state of the art
methods listed in [14] and another one presented in [22],
showing that our tool is highly competitive with the others.

A direct comparison is possible also with other tools (e.g.,

CORECLUST [17] and CREME [24]) and their experimen-
tal framework, that we plan to perform in the near future.
However we feel that the initial hints obtained within the
framework [14] give comforting evidence of the merits of the
approach embodied in CMF.

The detection of TFBS and CRMs is a complex challenging
problem (witness the ample spectrum of approaches) which
is far from having a satisfactory definitive solution [30], thus
there is ample scope for improvements both from the mod-
elling point of view and from the algorithmic one. Composite
Motif Finder introduces several new key ideas within a com-
binatorial overall approach, which, on one hand, have been
shown empirically to be valid on challenging benchmarks,
and on the other hand may prove useful in developing fu-
ture more advanced solutions.

The rest of the paper is organized as follows: Section 2 in-
troduces preliminary notions and definitions, Section 3 de-
scribes the algorthm adopted by CMF and, finally, Section 4
reports experimental results.

2. PRELIMINARY NOTIONS
In this Section we briefly define or recall the fundamental
notions used in the rest of the paper.

Let D = {A,C,G, T} be the alphabet representing the 4
DNA base pairs (bp). A short word w ∈ D∗ is called an
oligonucleotide, or simply oligo. Typically |w| ≤ 20. Let
S be a set of DNA fragments, e.g., sequences of base pairs
from the promoter regions of some genes. We say that w
occurs in S ∈ S if and only if w is a substring of S.

From a computational point of view, a DNA motif (or sim-
ply motif ) is a representation of a set of oligos, that are
meant to describe possible Transcription Factor (TF) bind-
ing loci. The representation can be made according to one
of a number of models presented in the literature. Here we
adopt the well-known Position Weight Matrices (PWMs).

A PWM M = (mb,j), b ∈ D, j = 1, . . . , k, is a 4×k real ma-
trix. The generic element mb,j gives a score for nucleotide b
being found at position j in the subset of length-k oligos that
M is intended to represent. Scores are typically computed
from frequency values. But how can we associate oligos to
PWMs? Different answers have been given to this question
in the literature (see, for instance, [12, 3, 20]). Here we
adopt perhaps the simplest one.

Consider a word w = w1w2 . . . wk over Dk, and define the
score of w, according to M , simply as the sum of the scores
of each nucleotides: SM (w) =

∑k
j=1 mwj ,j . The maximum

possible score given by M to any word in Dk is clearly
SM =

∑k
j=1 maxb∈D mb,j . Then we say the M represents

word w iff SM (w)
SM

≥ τ , for some threshold value τ ∈ (0, 1].

In the following, we will identify motifs with their matrix
representation.

A motif M has a match (or occurrence) in S ∈ S if and only
if there is a substring of S that is represented by M . We
borrow some terminology from [22] and call discretization
the process of determining the matches of a motif in a set



of DNA sequences.

A motif class is a set of motifs. Ideally, in CMF all the
motifs in a class describe potential binding sites for a single
TF. For this reason, we often freely speak of TFs to refer to
motif classes. A match of a motif class in a DNA sequence
S, or simply a TF match, is a match of any of the motifs
in that class. Note that motif classes have the ability to
represent oligos of different lengths.

In CMF a combinatorial group (or just group) is a collection
of not necessarily distinct TFs that have close-by matches
in a sufficiently large fraction of the input sequences. The
minimum fraction allowed for a set of TFs to be considered
a combinatorial group is termed quorum. The width or span
of a group match in a sequence S is the“distance”(measured
in bps) between the first bps of first and last TF match of
the group in S. In set-theoretic terms, groups are multisets.
We consider the “customary” definitions of intersection and
symmetric difference over multisets, which we recall using
the following two simple examples:

{x, x, y, y, y, z} ∩ {x, y, y, w} = {x, y, y}
{x, x, y, y, y, z} \ {x, y, y, w} = {x, y, z}

Finally, a Cis-Regulatory Module (or simply CRM ) is a set
of close-by TF matches in some input sequence. CRMs rep-
resent CMF’s best guess for functional TF binding regions.
Note that no quorum constraint is imposed to CRMs; in
fact, as groups of TF matches, CRMs are clearly unique ob-
jects. As we shall see in Section 3, CMF builds CRMs by
“extending” group matchings.

3. ALGORITHM
CMF main operation mode is CMRs discovery in a set S =
{S1, . . . , SN} of DNA sequences, using a collection of PWMs.
CMF is also able to run a number of third-party motif dis-
covery tools, the output of which can then be used either to
directly find potential CRMs or to “synthesize” PWMs, to
be later used under the main operation mode.

PWMs can be passed to CMF in either a single or multiple
files. In the latter case, CMF assumes that each file contains
PWMs for only one given TF. Actually, when the input set is
prepared using matrices taken from an annotated repository
(e.g., the TRANSFAC database [16]), assuming the knowl-
edge of the corresponding TFs is not an artificial scenario.

In this Section we briefly describe the four steps that imple-
ment CMF’s main operation mode on input a single PWM
file, leaving all the details to the full paper:

1. PWM clustering, to organize the matrices in equiva-
lence classes;

2. Discretization, to detect potential PWM matches in
the input sequences;

3. Module finding, which is the crucial CRMs detection
step;

4. Group and module filtering, to filter candidates and
pick, under the Zero Or One Per Sequence (ZOOPS)
model the presumably best CRM in each sequence.

3.1 PWM clustering
By default, CMF assumes that the PWMs in the input file
correspond to different TFs. Note, however, that the actual
number (and identities) of TFs that bind to the input se-
quences is an information that may be available from the
experimental protocols upstream data processing. As the
number of PWMs may be much larger than the number of
TFs1, if the user explicitly provides the latter information,
CMF performs a preliminary clustering step forming groups
of PWMs that are assumed to correspond to different TFs.

The similarities among matrices, needed by clustering, are
computed by the RSAT’s utility compare-matrices [26].
CMF then builds a weighted adjacency graph whose nodes
are the matrices and edges all the pairs (M1,M2) such that
the similarity between matrices M1 and M2 is above a de-
fault threshold (set in compare-matrices).

CMF has two options for the actual clustering method. The
first one is the well-known single linkage, which essentially
reduces to a variation of Kruskal’s algorithm for the con-
struction of a maximum cost spanning forest. More pre-
cisely, let Nm be the number of matrices and let NF be the
number of TFs; then CMF performs at most min{|E|, Nm−
NF } steps of Kruskal’s algorithm, where E is the set of edges
in the similarity graph. The clusters returned are the graphs
induced by the vertices in distinct trees of the forest.

The second clustering option available in CMF is single link-
age followed by a dense core computation performed on
each subgraph produced by single linkage. Here again CMF
uses external software, namely the Pseudo-clique enumera-
tor (PCE) [28], that we chose since it is sufficiently light for
the graph sizes we reasonably expect to handle.

If the PWM file essentially includes only “good” matrices
corresponding to possibly different TFs, then even a simple
clustering algorithm like single-linkage may be able to cor-
rectly separate them into the “right” groups. On the other
hand, if the good matrices are mixed with noisy ones, then
PCE refinement is likely to give better results. The first
state of affairs may apply, for instance, when the input PWM
file is the result of a judicious compilation from some anno-
tated database. On the other hand, the second circumstance
is likely to occur if CMF is used downstream motif discovery
software tools.

3.2 Discretization
Even with the most accurate PWM description of a motif,
the problem of determining the “true” motif matches in the
input sequences is all but a trivial task. Whatever the algo-
rithm adopted, there is always the problem of setting some
thresholds to separate matches from non-matches, a choice
that may have a dramatic impact on the tool’s performance.
We have already presented (Section 2) the discretization cri-
terion adopted in CMF; what is still missing is just the de-
scription of the CMF’s threshold management.

In general, low thresholds improve sensitivity while high
thresholds may improve the rate of positive predicted val-

1This may happen if many matrices are loaded from an an-
notated database (possibly all of them), or when they are
produced by running third-party tools.



ues (PPVs). As a preliminary observation, we note that the
inherent combinatorics of CRMs may help to improve the
PPV statistics (see next Section). A reasonable strategy is
then to moderately privilege sensitivity during discretiza-
tion, with the hope of increasing precision when detecting
CRMs. As a second notice, we recall that for the purpose of
predicting CRMs the important notion is that of TF match,
rather than motif match. For TFs with many matrices, low
thresholds may incur in a very high number of TF matches,
with possibly high sensitivity but “very” low PPV. On the
other hand, high thresholds may make it hard for a poorly
represented class to emerge.

In light of the above argument, we formulate the following
general and simple criterion: assign TFs (motif classes) with
many/few matrices a high/low threshold. We are aware that
the mathematical meaning of the previous statement may in
turn be the subject of a debate. We did our best to keep
the user away from such questions that regard (so called)
nuisance parameters [10]. In CMF, the thresholds (as well
as other values that may affect program’s behavior) are kept
in a configuration file; while the default values may clearly
be changed, the ones used in the experiments described in
Section 4 proved to give good results across a comprehensive
benchmark. In particular, for what concerns the discretiza-
tion thresholds, CMF starts from the default value set in
the TAMO package (on which CMF in part builds), namely
τ = 0.7. However, this is quite strong and deemed appropri-
ate only for very popular motif classes. Hence CMF reduces
it to a minimum default value of 0.5 for poorly represented
TFs (one or two PWMs). These assignments are completely
transparent to the typical user.

As a final remark, we observe that lowering the thresholds
may give the additional benefit of not filtering out low-score
matches2. We have more on this point, though, and we will
come back to it in Section 3.4.

3.3 Module finding
The previous two steps result in a set of TFs (motif classes)
and a set of TFs matches, which are the “input” to the Mod-
ule finding step. This is in turn divided into two main sub-
processes: (a) finding combinatorial groups, and (b) extend-
ing groups to CRMs.

(a) To determine the combinatorial groups, CMF uses two
internal parameters that are progressively relaxed until
each TF is possibly included in at least one group.
These parameters are the maximum allowed width W
of CRMs and the minimum quorum q for combinatorial
groups: W ∈ {W1,W2, . . . ,Wr}, with W1 < W2 <
. . . < Wr, and q ∈ {q1, . . . , qs}, with 1 ≥ q1 > q2 >
. . . > qs > 0. The values Wi and qj are set in the CMF
configuration files.

Let N = |S|. At each iteration (i.e., for given val-
ues of W and q), CMF starts computing the maximal
groups that respect the width constraint in each se-

quence: M1, . . . ,MN , where Mi = {m(i)
1 , . . . ,m

(i)
ni };

each m
(i)
k is in turn a pair ⟨m, v⟩, where m ∈ R∗ is the

group and v = 1 is the (initial) quorum. Note that,

2Sometimes referred to as weak signals in the literature.

while the groups are multisets, each Mi is instead a set
and thus does not include duplicate elements. Start-
ing from G = M1, CMF then computes the Pairwise
Intersection set (PI ) between G and all the other Mj :

G = M1

G ← PI(G,Mj), j = 2, . . . N (1)

Pairwise intersection means that each element of G
is intersected with each element of Mj . Note, again,
that PI(G,Mj) is a set, hence the possible duplicates
are removed. The intersection I of ⟨m1, v⟩ ∈ G and
⟨m2, 1⟩ ∈ Mj is defined as follows using operations
over multisets.

I(⟨m1, v⟩, ⟨m2, 1⟩) = ( ⟨m1 ∩m2, v + 1⟩,
⟨m1 \m2, v⟩,
⟨m2 \m1, v⟩ )

After intersection, groups that are not maximal with
respect to at least one between TFs composition and
quorum are immediately discarded. Also discarded are
those maximal groups that can not possibly satisfy the
minimum quorum constraint. At the end of the itera-
tion, CMF checks whether each TFs is represented in
at least one group that satisfy the quorum constraint.
In the affirmative case the subprocess stops. Other-
wise, another iteration begins with either width or
minimum quorum value (alternately) relaxed. If the
termination condition is not satisfied (not even with
the weakest parameters), then some TFs will not be
represented in the computed groups.

(b) Given a group G with quorum v, CMF first retrieves
its actual matches in v sequences. Then tries to extend
each match by possibly including other TFs matches
that satisfy the width constraints. This is done inde-
pendently for each sequence. All these extended group
matches form the CRMs that CMF gives in output un-
der the ANR (Any NumbeR) model.

We will say more about the complexity of the module finding
step in Section 3.5. Here we observe, however, that pairwise
intersections are performed in a highly efficient way as string
comparison operations. In fact, before the group finding
process starts, the nF TFs produced by the clustering step
are mapped to an (arbitrary) nF -letter alphabet R, and the
maximal groups kept as character-sorted strings. For in-
stance, if R = {A,B,C, . . .}, then we might have groups
like, e.g., AAABB, ACC, and so on.

3.4 Group and module filtering
Under the ZOOPS model, groups and modules are further
filtered, in order to pick the “best” instance in those se-
quences where there is more than one possible answer. We
have three filtering phases.

The first filter can be termed “group filtering” as it aims
at eliminating those group matches that are not “strong
enough”. As outlined in Section 3.2, a weak TF match may
be allowed, due to possibly low thresholds for poorly repre-
sented TFs. At the group level, though, we impose stronger
requirements, with the aims of both improving PPVs and
possibly limiting the number of TFs matches, which highly
affects the cost of the module finding step (see Section 3.5).



The maximum threshold τ specified in the CMF configura-
tion file (which defaults to the value 0.7, as in TAMO) is
here used to discard those group matches that exhibit less
than τ × 100 percent of conserved bps over all TF matches
of the group. A bp is conserved simply if it’s the one that
scores the highest in its PWM column.

The second filter works as follows. After discarding weak
group matches, we perform a clustering of the remaining
ones with respect to match widths and return the strongest
match among the ones in the most popular cluster. Notice
that there is some literature on the so called structured mo-
tifs (see, e.g., [19]). These are CRMs in which the order of
the TF matches and (to some extent) the inner spacings are
fixed. We do not use any of these pieces of information, but
simply note that, if the spacings are fixed, then the width of
the CRM is fixed (or exhibits small oscillations). This argu-
ment give some support to our choice of width clustering.

The third filter, of a statistic nature, uses p-values. CMF
accept an input parameter that gives the maximum p-value
acceptable for combinatorial groups, and which defaults to
0.01. The p-value of groups in CMS is computed exactly as
specified in [22] for the modules.

3.5 Computational cost
The cost of the bare CMF algorithm is dominated by the
module finding step or, more precisely, by the combinatorial
group finding subprocess. This is easily seen to be expo-
nential in the length of the longest group g (regarded as a
string over R) in any of the initial sets Mi’s, simply because
g may have an exponential number of maximal subgroups
that satisfy also the quorum constraint. In turn, the length
of g may be of the order of module width and hence of se-
quence length. This is clearly a hardly achievable worst-case.
At the other extreme, there is the situation where we only
have two TFs and look for sites where both TFs bind (as for
the TRANSCompel dataset of Section 4). In this case the
cost of the subprocess is linear in the number of sequences.

When combinatorial group finding is fast, which is often
the case in practice, the computational bottlenecks move to
other parts of the code, i.e., outside of the software module
that implements the core CMF algorithm. In particular, the
computation of PWM pairwise similarities takes quadratic
time in the number of PWMs, which can be pretty high in
a number of scenarios. To give some figures, on input the
AP1-Ets dataset (see Section 4.1), which is the largest one
of the TRANSCompel benchmark, CMF took 2m07s time
in case of the noise 0 set of matrices3. The running time
increased to full 33m in case of any of the noise 75 sets of
PWMs, the vast majority of which (around 29m of total
31m increase) due to pairwise similarity computations. On
the other hand, on muscle and liver datasets (that have few
matrices) CMF took less than 10s. Note that, currently,
similarities are computed by third-party software written in
Perl. A substantial (practical) improvement would be ob-
tained by simply recoding this module in a efficient compiled
language (say, C++).

3The experiments were performed on a quite old i386 ma-
chine with 1GB of RAM running GNU/Linux with Kernel
2.6.32-5-686.

4. EXPERIMENTS
In this section we present the results obtained from a num-
ber of experiments performed on the benchmark datasets
presented in [14] (see Section 4.1). In the following, we refer
to [14] as to the assessment paper.

We compare CMF against the eight tools considered in the
assessment paper (CisModule [34], Cister [7], Cluster-Buster
(CB) [8], Composite Module Analyst (CMA) [13], MCAST [2],
ModuleSearcher (MS) [1], MSCAN [11] and Stubb [25]). We
also consider another tool, named COMPO, developed by
the same research group that performed the assessment [22].
The results presented here show that CMF is competitive
with existing discovery tools.

4.1 Datasets
We use both the TRANSCompel as well as the liver and
muscle datasets presented in [14], which we briefly recall
here. Together, they form a comprehensive benchmark that,
to some extent, gives a non biased view of the relative merits
of the various prediction tools.

The TRANSCompel benchmark includes ten datasets corre-
sponding to as many modules, each consisting of two bind-
ing sites for different TFs from the following set: AP1, Ets,
NFAT, NFκB, CEBP, Ebox, AML, IRF, HMGIY, PU1, and
Sp1. Any dataset is named after the two TFs that contribute
to the corresponding modules: AP1-Ets, AP1-NFAT, AP1-
NFκB, CEBP-NFκB, Ebox-Ets, Ets-NFκB, NFκB-HMGIY,
PU1-IRF, and Sp1-Ets. In [14], all the matrices correspond-
ing to a same TF were grouped to form an“equivalence set”,
and treated as they were one. These matrices form what is
called, in the assessment paper, the noise 0 benchmark.

To simulate conditions in which input data are fuzzier, the
authors “generated” noisy PWMs (picking them at random
from TRANSFAC), that were added to the noise 0 bench-
mark to give rise to the so-called noise N benchmarks, for
N ∈ {50, 75, 90, 95, 99}. For a given TF, noise N means
a set containing as many as N% noisy matrices and (100-
N)%“good” ones. However, noise 99 has a special meaning,
namely that the set includes all the matrices in the TRANS-
FAC database. In the experiments performed here, we only
consider noises 0, 50 and 75. For each level of noise (except
noise 0, of course), the assessment paper includes the ten
different datasets (i.e., AP1-Ets, AP1-NFAT, etc), in which
the good matrices are mixed with different noisy ones.

Two additional benchmarks are discussed in [14], each con-
sisting of a single dataset, namely liver and muscle. Liver
includes modules with up to nine binding sites from four dif-
ferent TFs, while muscle comes with up to eight sites from
five TFs.

Each dataset has its own collection of (not necessarily dis-
tinct) input sequences, where occurrences of the ranging
from a minimum of four (for the Ebox-Ets dataset) to a
maximum of twenty-four (for the muscle dataset).

We obtained the statistics for the tools evaluated in [14] from
http://tare.medisin.ntnu.no/composite/composite.php.
Regarding COMPO, in [22] the authors provide statistics
for liver and muscle only. However, they make available all



the predictions made by COMPO on input TRANSCompel
data at http://tare.medisin.ntnu.no/compo/. We used
such data to compute the statistics given here for COMPO.

4.2 Scoring predictions
Due to limited space, prediction accuracy is measured here
by means of statistics at the nucleotide-level, leaving the
analysis at motif level for the full paper. In particular, we
compare CMF against all the other nine tools using the
correlation coefficient (CC ). We also compare CMF and
COMPO (the best performing tool among CMF’s competi-
tors) using other popular statistics, namely: Sensitivity (Sn),
Positive Predicted Values (PPV ), Performance Coefficient
(PC ), and Average Site Performance (ASP). For a defini-
tion the reader may consult the assessment paper or [27].

Average results over different datasets are computed in two
different ways (as in [14]). The Combined score is obtained
by summing up the values of true/false positive/negative
predictions over the union of the sequences corresponding to
the datasets being combined. The overall score is simply the
arithmetic mean of the single datasets’ scores. For the noisy
TRANSCompel benchmarks, combined scores are computed
by averaging, over the ten noisy sets, the combined scores
obtained on each set. The overall score is instead a double
average: first the average, over the 10 noisy sets, of the mea-
sures obtained for single datasets, and then the arithmetic
mean over the ten datasets.

4.3 Experiments and Results
In all the experiments, CMF was run with fixed configu-
ration file, in particular with W = {100, 150, 200}, q =
{80, 50, 20} and minimum p-value=0.01 (see Section 3.3).
However, for the TRANSCompel benchmark no filtering on
p-value was specified (i.e., p-value=1), as we looked only
for combinations of two different TFs (in case of liver and
muscle there are instead hundreds of possible groups).

The first set of experiments involved only CMF over the
TRANSCompel benchmark. For each dataset we performed
two runs, one with matrices already separated by TF (i.e.,
giving CMF two PWM input files), and one with mixed
matrices, only letting CMF know that the TFs involved are
just two. Table 1 shows the results obtained.

By comparing the two columns, we gain some knowledge
about CMF’s ability to correctly infer the“true motif classes”
(or TFs) from a set of mixed, but “good”matrices. In eight
of the ten datasets, the output produced by CMS is exactly
the same, implying that CMF recovered the two different
TFs. On input the AP1-NFAT dataset CMF failed in both
cases (confirming once more the hardness of this dataset
[14]). Hence, only for one dataset (NFκB-HMGIY) CMF
really failed because of poor TF separation. Poor separation
also occurred on input the noise 50 and noise 75 datasets, if
using the single linkage algorithm (results not shown). How-
ever, with the PCE refinement, the results improved again
to a competitive level (Tables 3 and 4).

Tables 2 to 4 shows the results obtained by CMF compared
to the best results from the the nine competitors for the
three TRANSCompel benchmarks. In these experiments, all
the PWMs were submitted to CMF in a unique file; in fact,

Dataset/CC
CMF

Two PWM files
CMF

One PWM file
AP1-Ets 0.428 0.428

AP1-NFAT 0.052 0.035
AP1-NFκB 0.665 0.665
CEBP-NFκB 0.736 0.736
Ebox-Ets 0.550 0.550
Ets-AML 0.767 0.767
IRF-NFκB 0.890 0.890

NFκB-HMGIY 0.533 0.075
PU1-IRF 0.804 0.804
Sp1-Ets 0.509 0.509

Combined CC 0.556 0.524
Overall CC 0.593 0.546

Table 1: CC values for noise 0 TRANSCompel data,
when feeding CMF with two or one input files.

this is certainly the way PWMs are provided to COMPO,
and hence, for fair comparisons, we did not take advantage of
CMF’s ability to exploit the knowledge of TF memberships.

CC
Dataset CMF Best competitor
AP1-Ets 0.428 0.299 (MS)

AP1-NFAT 0.035 0.151 (CMA)
AP1-NFκB 0.665 0.585 (COMPO)
CEBP-NFκB 0.736 0.717 (CB)
Ebox-Ets 0.550 0.548 (COMPO)
Ets-AML 0.767 0.424 (COMPO)
IRF-NFκB 0.890 0.912 (MSCAN)

NFκN-HMGIY 0.075 0.404 (MS)
PU1-IRF 0.804 0.435 (MS)
Sp1-Ets 0.509 0.202 (Cister)

Combined CC 0.524 0.408 (COMPO)
Overall CC 0.546 0.387 (COMPO)

Table 2: CC results for noise 0 TRANSCompel
data. Bold face figures highlight the best re-
sult among CMF and competitors MS = Module-
Searcher, CB = Cluster-Buster.

The results suggest that CMF is indeed competitive with
other state of the art tools. On the vast majority of the
datasets as well as in the cumulative statistics, CMF out-
performed all the other tools. Among the competitors, it
seems to us that the overall good behavior of COMPO de-
serves consideration.

In Table 5 we compare CMF and COMPO on a wider sets
of statistics. Here a sort of complementary behavior among
the two tools is worth noticing, as the noise level increases,
with respect to the Sn and PPV statistics. In fact, while
CMF’s sensitivity exhibits a negative trend, this does not
seem the case for COMPO. On the other hand, CMF seems
better at keeping answer precision at an acceptable rate.

CMF behaved very well also on input the liver and muscle
datasets, giving the best results on muscle and the third best



CC
Dataset CMF Best competitor
AP1-Ets 0.427 0.277 (MS)

AP1-NFAT 0.005 0.133 (CMA)
AP1-NFκB 0.375 0.546 (COMPO)
CEBP-NFκB 0.724 0.698 (COMPO)
Ebox-Ets 0.550 0.548 (COMPO)
Ets-AML 0.641 0.425 (COMPO)
IRF-NFκB 0.890 0.850 (MS)

NFκN-HMGIY 0.054 0.404 (MS)
PU1-IRF 0.631 0.433 (MS)
Sp1-Ets 0.439 0.155 (CMA)

Combined CC 0.502 0.392 (COMPO)
Overall CC 0.474 0.386 (COMPO)

Table 3: CC values, averaged over the ten noise sets,
for noise 50 TRANSCompel data. CMA = Compos-
ite Module Analyst

CC
Dataset CMF Best competitor
AP1-Ets 0.332 0.277 (MS)

AP1-NFAT 0.039 0.120 (CMA)
AP1-NFκB 0.452 0.546 (CMA)
CEBP-NFκB 0.724 0.698 (COMPO)
Ebox-Ets 0.477 0.488 (COMPO)
Ets-AML 0.383 0.394 (COMPO)
IRF-NFκB 0.851 0.850 (MS)

NFκN-HMGIY 0.092 0.404 (MS)
PU1-IRF 0.366 0.296 (MS)
Sp1-Ets 0.131 0.120 (CMA)

Combined CC 0.410 0.404 (COMPO)
Overall CC 0.362 0.351 (COMPO)

Table 4: CC values, averaged over the ten noise sets,
for noise 75 TRANSCompel data.

result on liver, as shown in Table 6. On these datasets, how-
ever, the observed performance differences between CMF
and the other tools (with the exception of CisModules) are
less significant.

5. CONCLUSIONS
In this paper we have presented CMF, a novel tool for Cis-
Regulatory Module detection whose algorithmic core is based
on purely combinatorial ideas. Using well-known benchmark
data, our software proved to be highly competitive against
nine state-of-the-art other tools.

Giving the good results obtained, we are encouraged to carry
further activities on CMF, including the ones listed below.

- We plan to make further comparisons, including other
tools as well as other experimental frameworks (e.g.,
the already mentioned CORECLUST [17] and CREME
[24], to name a few), not only with the goal of better
estimating CMF’s value, but also with the aim at un-
derstanding its limitations, e.g., why it fails on input
specific datasets, and how to possibly overcome them.

Dataset Tool PPV Sn PC ASP CC

TRANSCompel

Noise 0

CMF 0.50 0.60 0.37 0.55 0.52
COMPO 0.40 0.47 0.28 0.44 0.41

TRANSCompel

Noise 50

CMF 0.52 0.53 0.35 0.52 0.50
COMPO 0.37 0.48 0.26 0.42 0.39

TRANSCompel

Noise 75

CMF 0.44 0.43 0.28 0.43 0.41
COMPO 0.32 0.45 0.23 0.39 0.35

Table 5: A wider statistic comparison between CMF
and COMPO

Dataset
Tool Liver Muscle
CMF 0.524 0.563

COMPO 0.560 0.470
Cluster-Buster 0.588 0.411

Cister 0.306 0.356
MSCAN 0.510 0.498

ModuleSearcher 0.425 0.463
MCAST 0.504 0.296
Stubb 0.476 0.243
CMA 0.358 0.462

CisModule -0.005 0.289

Table 6: CC results for the Liver and Muscle
datasets

- We plan to perform experiments also under such sce-
narios where the PWMs are produced (directly on indi-
rectly) by third-party motif finding programs. Clearly,
whether or not good results can be achieved here will
largely depend on the quality of the external tools
performance. However, our hope here is to exploit
CMF’s ability to filter out false positives (see Table
5) to achieve at least good PPV.

- Internally, we want to explore different similarity mea-
sures between PWMs and possibly different clustering
algorithms, since in some cases poor predictions are
caused by bad TF detection (as in case of the NFκB-
HMGIY dataset, see Table 1).
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